Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(6): 4205-4209, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447064

RESUMO

Described herein is the development of a visible-light-driven carbonylation of alkyl halides. The exploitation of visible light to activate Pd complexes and the use of formates to serve the dual role of a CO surrogate and a phenoxide source allow the preparation of esters in moderate to good yields. Its relatively mild reaction conditions and the ability to perform this transformation without direct handling of toxic CO gas provide a practical means to access esters from alkyl halides.

2.
Chem Asian J ; : e202400126, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441246

RESUMO

Palladium serves as a multi-functional catalyst which is controllable by tuning reaction conditions. This work demonstrated the utilization of a palladium catalyst for the synthesis of phenanthrenols by cascade palladium-catalyzed Suzuki/Heck reaction between chalcone and 2-bromophenylboronic acid, followed by Michael addition. The sequential reaction could be controlled by reactivity of the palladium catalyst in different solvents and concentrations of reagents. This protocol could be applied to a broad range of substrates to give products in low to good yields.

3.
Heliyon ; 10(3): e24694, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318050

RESUMO

Management of neuroblastoma is challenging because of poor response to drugs, chemotherapy resistance, high relapse, and treatment failures. Doxorubicin is a potent anticancer drug commonly used for neuroblastoma treatment. However, doxorubicin induces considerable toxicities, particularly those caused by oxidative-related damage. To minimize drug-induced adverse effects, the combined use of anticancer drugs with natural-derived compounds possessing antioxidant properties has become an interesting treatment strategy. Barakol is a major compound found in Cassia siamea, an edible plant with antioxidant and anticancer properties. Therefore, barakol could potentially be used in combination with doxorubicin to synergize the anticancer effect, while minimizing the oxidative-related toxicities. Herein, the potential of barakol (0.0043-43.0 µM) to synergize the anticancer effect of low-dose doxorubicin (0.5 and 1.0 µM) was investigated. Results indicated that barakol could enhance the cytotoxic effect of low-dose doxorubicin by affecting the cell viability of the treated cells. Furthermore, the co-treatment with barakol and low-dose doxorubicin decreased the levels of intracellular ROS when compared with the control. Moreover, the antimetastatic effect of the barakol itself was studied through its ability to inhibit metalloproteinase-3 (MMP-3) activity and prevent cell migration. Results revealed that the barakol inhibited MMP-3 activity and prevented cell migration in time- and dose-dependent manners. Additionally, barakol was a non-cytotoxic agent against the normal tested cell line (MRC-5), which suggested its selectivity and safety. Taken together, barakol could be a promising compound to be further developed for combination treatment with low-dose doxorubicin to improve therapeutic effectiveness but decrease drug-induced toxicities. The inhibitory effects of barakol on MMP-3 activity and cancer cell migration also supported its potential to be developed as an antimetastatic agent.

4.
Nat Prod Res ; : 1-6, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344830

RESUMO

Phytochemical investigation of Microstachys chamaelea led to the isolation and identification of fourteen known compounds after analysis of spectroscopic data. They consist of eight flavonoids (1-8), two benzoic acid derivatives (9-10), one brevifolin carboxylic acid derivative (11), one geraniinic acid derivative (12), shikimic acid (13), and ß-daucosterol (14). Remarkably, it is the second isolation of compound 12 from a natural source. Several isolates were evaluated against ten cancer cell lines and on a set of targets involved in oxidative stress, as no such assays were undertaken in previous works. Compound 7 showed moderate to strong cytotoxicity against eight cell lines (IC50 values of 6.0-39.0 µM), while compounds 2, 8, and 11 showed weak to moderate cytotoxicity. Compounds 1-3, 5, and 11-12 showed moderate to strong DPPH and XXO inhibitory activities (IC50 values of 13.1-16.5 and 6.0-69.0 µM, respectively).

5.
J Org Chem ; 89(5): 2964-2983, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345392

RESUMO

Nazarov cyclization of the (E)-(2-stilbenyl)methanols under the catalysis of p-TsOH immobilized on silica (PTS-Si) proceeded to give the corresponding indanyl cation with the exclusive trans relationship at the two newly formed adjacent stereogenic centers. The ensuing intramolecular nucleophilic addition by the MOM-protected phenol (m = 0) or benzyl alcohol (m = 1) furnished the Indane-fused benzofuran [5/5] or isochroman [5/6] system, respectively, with the exclusive cis stereocontrol at the two-carbon ring junction. Thus, in a single step, from nonchiral starting materials, the intramolecular cascade carbocation cyclization (CCC) furnished the [5/5] or [5/6] oxygen-containing Indane fused-ring systems in moderate to good yields with excellent stereoselectivity on all three contiguous stereogenic centers.

6.
Proc Natl Acad Sci U S A ; 121(4): e2317344121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241440

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Proliferação de Células , Doenças Renais Policísticas/metabolismo , Apoptose , Estresse Oxidativo , Cistos/metabolismo , DNA/metabolismo , Rim/metabolismo , Canais de Cátion TRPP/genética
7.
Chem Asian J ; 19(2): e202300937, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37986694

RESUMO

Herein, we report the unusual skeletal rearrangement of spiro[4.5]decadienone to benzoxepane. In particular, Lewis acid-promoted epoxide-opening ipso-cyclization of aryl epoxides afforded spiro[4.5]decadienone intermediates. Subsequent thermal activation assembled a benzoxepane core via rearomative molecular reorganization. The sequence was high-yielding and highly diastereoselective but sensitive to the aromatic substitution pattern and the epoxide side chain. Mechanistic studies suggested that the rearrangement proceeded via an uncommon intramolecular enolate attack onto the electrophilic O of p-quinone oxonium zwitterion. DFT calculations helped rationalize the product distribution and the origin of diastereoselectivity. Initial investigation into the application of this chemical transformation is also presented.

8.
ACS Omega ; 8(48): 46284-46291, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075774

RESUMO

Hericium erinaceus is an edible mushroom with diverse pharmaceutical applications. Although this mushroom is an attractive source of natural products for cancer treatment, little is known about the bioactive compounds from this mushroom, which may possess antibreast cancer activity. Here, we report the isolation and structure elucidation of new compounds, 5'-hydroxyhericenes A-D (1-4) as an inseparable mixture, together with known compounds (5-16) from the fruiting body of H. erinaceus. Based on NMR spectroscopic data and MS fragmentation analysis, the structure of a previously reported natural product, 3-[2,3-dihydroxy-4-(hydroxymethyl)tetrahydrofuran-1-yl]-pyridine-4,5-diol (5), should be revised to adenosine (6). Compounds 1-4 inhibit xanthine oxidase activity, while compounds 6, 9, and 10 scavenge reactive oxygen species generated by xanthine oxidase. Moreover, hericerin (13) exhibits strong growth inhibitory activity against T47D breast cancer cells and, to a lesser extent, against MDA-MB-231 breast cancer and MRC-5 normal embryonic cells. Exposure of T47D and MDA-MB-231 cells slightly increased PARP cleavage, suggesting that the growth inhibitory effect of hericerin may be mediated through nonapoptotic pathways. Our results suggest that the bioactive compounds of mushroom H. erinaceus hold promise as antibreast cancer agents.

9.
Sci Rep ; 13(1): 22840, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129499

RESUMO

Parasitic roundworms cause significant sickness and mortality in animals and humans. In livestock, these nematodes have severe economic impact and result in losses in food production on a global scale. None of the currently available drugs ideally suit all treatment circumstances, and the development of drug-resistant nematode strains has become a challenge to control the infection. There is an urgent need to develop novel anthelmintic compounds. According to our previous report, N-methylbenzo[d]oxazol-2-amine (1) showed anthelmintic activity and lowest cytotoxicity. In this study, in vivo anthelmintic properties were evaluated using Trichinella spiralis infected mice. Toxicity was evaluated using the rats and mode of action using molecular docking and metabolomics approaches. The in vivo results demonstrate that a dose of 250 mg/kg reduced the T. spiralis abundance in the digestive tract by 49%. The 250 mg/kg Albendazole was served as control. The relatively low acute toxicity was categorized into chemical category 5, with an LD50 greater than 2000 mg/kg body. Molecular docking analysis showed the T. spiralis tubulin beta chain and glutamate-gated channels might not be the main targets of compound 1. Metabolomics analysis was used to explain the effects of compound 1 on the T. spiralis adult worm. The results demonstrated that compound 1 significantly up-regulated the metabolism of purine, pyrimidine and down-regulated sphingolipid metabolism. In conclusion, compound 1 could be a potential molecule for anthelmintic development. The bioavailability, pharmacokinetics, and absorption of this compound should be studied further to provide information for its future efficacy improvement.


Assuntos
Anti-Helmínticos , Nematoides , Trichinella spiralis , Humanos , Camundongos , Ratos , Animais , Simulação de Acoplamento Molecular , Anti-Helmínticos/uso terapêutico , Albendazol/uso terapêutico
10.
J Org Chem ; 88(23): 16520-16538, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37974421

RESUMO

An efficient divergent approach to functionalized naphthalene derivatives, the naphthalenamides, via base-mediated and silver-catalyzed cyclization has been developed using enone-oxazolones as the precursors. This protocol utilized base in methanol with heating to construct the corresponding hydroxynaphthalenamides 2 by a C-C bond formation, oxazolone ring-opening, and aromatization in good yields. On the other hand, phosphorylated dihydronaphthylamides 3 were generated by using H-phosphonate as the phosphonating reagent in a silver-catalyzed cyclization involving the phospha-1,4-addition/intramolecular ring closure with concomitant C-P/C-C bond formation in good yields.

11.
Nat Prod Bioprospect ; 13(1): 55, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036688

RESUMO

Four highly oxidized pimarane diterpenoids were isolated from Kaempferia takensis rhizomes. Kaemtakols A-C possess a tetracyclic ring with either a fused tetrahydropyran or tetrahydrofuran motif. Kaemtakol D has an unusual rearranged A/B ring spiro-bridged pimarane framework with a C-10 spirocyclic junction and an adjacent 1-methyltricyclo[3.2.1.02,7]octene ring. Structural characterization was achieved using spectroscopic analysis, DP4 + and ECD calculations, as well as X-ray crystallography, and their putative biosynthetic pathways have been proposed. Kaemtakol B showed significant potency in inhibiting nitric oxide production with an IC50 value of 0.69 µM. Molecular docking provided some perspectives on the action of kaemtakol B on iNOS protein.

12.
Org Biomol Chem ; 21(44): 8888-8901, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902976

RESUMO

Our research has led to the development of a divergent synthesis approach for the synthesis of 3,4-dihydro-2H-benzo[h]chromen-2-one 3 and fluorenone 9 derivatives using ortho-alkynylarylketones as common precursors. The synthesis of 3,4-dihydro-2H-benzo[h]chromen-2-ones 3 employed silver catalyzed ketonization to form polycarbonyl intermediates which underwent double intramolecular cyclization and decarboxylation to generate a lactone and a phenyl ring in a one-pot fashion. In addition, the same precursor could be used to prepare fluorenone derivatives 9 under acidic conditions. The reaction proceeded via the formation of indenone analogs, followed by the generation of the para-quinone methide intermediate and intramolecular cyclization to provide the corresponding products in good yields.

13.
Phytochemistry ; 216: 113890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852566

RESUMO

Four undescribed bis-iridoid glycosides, named phukettosides A-D, and one iridoid glycoside, referred to as phukettoside E, were isolated and fully characterized from the leaves of Morinda umbellata L. Phytochemical analysis also revealed the presence of eight known compounds. The structures were determined through extensive analysis of 1D and 2D-NMR spectroscopic and HRMS spectral data, and the absolute configurations of the isolates were deduced through ECD calculations. Biogenetic pathways for the bis-iridoid glycosides, phukettosides A-C, through intermolecular Diels-Alder type reactions, were proposed. The isolated compounds, with the exception of phukettosides B and D, were evaluated against a panel of cancer cell lines (MOLT-3, HuCCA-1, A549, HeLa, HepG2, and MDA-MB-231) and a non-cancerous cell line (MRC-5) for their cytotoxicity. None of the isolates had significant cytotoxic effects on the tested cell lines.


Assuntos
Glicosídeos Iridoides , Morinda , Humanos , Glicosídeos Iridoides/química , Morinda/química , Glicosídeos/química , Folhas de Planta/química , Iridoides/química , Células HeLa
14.
ACS Omega ; 8(36): 32593-32605, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720749

RESUMO

This work presents a flexible synthesis of 10 novel naphthoquinone-chalcone derivatives (1-10) by nucleophilic substitution of readily accessible aminochalcones and 2,3-dichloro-1,4-naphthoquinone. All compounds displayed broad-spectrum cytotoxic activities against all the tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, T47D, and MDA-MB-231) with IC50 values in the range of 0.81-62.06 µM, especially the four most potent compounds 1, 3, 8, and 9. The in vitro investigation on the fibroblast growth factor receptor 1 (FGFR1) inhibitory effect indicated that eight derivatives (1-2, 4-5, and 7-10) were active FGFR1 inhibitors (IC50 = 0.33-3.13 nM) with more potency than that of the known FGFR1 inhibitor, AZD4547 (IC50 = 12.17 nM). Promisingly, compounds 5 (IC50 = 0.33 ± 0.01 nM), 9 (IC50 = 0.50 ± 0.04 nM), and 7 (IC50 = 0.85 ± 0.08 nM) were the three most potent FGFR1 inhibitors. Molecular docking, molecular dynamics simulations, and MM/GBSA-based free energy calculation revealed that the key amino acid residues involved in the binding of the compounds 5, 7, and 9 and the target FGFR1 protein were similar with those of the AZD4547 (i.e., Val492, Lys514, Ile545, Val561, Ala640, and Asp641). These findings revealed that the newly synthesized naphthoquinone-chalcone scaffold is a promising structural feature for an efficient inhibition of FGFR1.

15.
Org Biomol Chem ; 21(42): 8500-8515, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702619

RESUMO

This work demonstrates a new method for the synthesis of cyclopenta[a]naphthalenol and 2-phenylnaphthalen-1-ol analogs via selective cyclization. ortho-Alkynylarylkenones were employed as the common substrates that could be prepared by Sonogashira coupling between 2-haloarylacetophenone and pent-4-yn-1-ol derivatives. These precursors were used without purification to construct 2-phenylnaphthalen-1-ol intermediates by treating with (+)-CSA under heating conditions. Selective cyclization occurred when the reaction was conducted in methyl trimethylacetate solvent which predominantly produced the 2-phenylnaphthalen-1-ol product through 6-endo-dig cyclization without elimination or the formation of cyclopenta[a]naphthalenol via shutting down the 5-exo-dig mode of cyclization. Switching the acid from a Brønsted acid to Bi(OTf)3 led to smooth reactions, providing the cyclopenta[a]naphthalenol products in moderate to good yields. Moreover, we also demonstrated the utilization of 2-phenylnaphthalen-1-ol to prepare naphthoquinone, which is an important core structure of bioactive and natural product compounds.

16.
ACS Omega ; 8(37): 33367-33379, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744807

RESUMO

Encouraged by the lack of effective treatments and the dramatic growth in the global prevalence of neurodegenerative diseases along with various pharmacological properties of chalcone pharmacophores, this study focused on the development of aminochalcone-based compounds, organic molecules characterized by a chalcone backbone (consisting of two aromatic rings connected by a three-carbon α,ß-unsaturated carbonyl system) with an amino group attached to one of the aromatic rings, as potential neuroprotective agents. Thus, the aminochalcone-based compounds in this study were designed by bearing a -OCH3 moiety at different positions on the ring and synthesized by the Claisen-Schmidt condensation. The compounds exhibited strong neuroprotective effects against hydrogen peroxide-induced neuronal death in the human neuroblastoma (SH-SY5Y) cell line (i.e., by improving cell survival, reducing reactive oxygen species production, maintaining mitochondrial function, and preventing cell membrane damage). The aminochalcone-based compounds showed mild toxicity toward a normal embryonic lung cell line (MRC-5) and a human neuroblastoma cell line, and were predicted to have preferable pharmacokinetic profiles with potential for oral administration. Molecular docking simulation indicated that the studied aminochalcones may act as competitive activators of the well-known protective protein, SIRT1, and provided beneficial knowledge regarding the essential key chemical moieties and interacting amino acid residues. Collectively, this work provides a series of four promising candidate agents that could be developed for neuroprotection.

17.
Sci Rep ; 13(1): 13456, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596365

RESUMO

Anticopalic acid (ACP), a labdane type diterpenoid obtained from Kaempferia elegans rhizomes, together with 21 semi-synthetic derivatives, were evaluated for their cancer cytotoxic activity. Most derivatives displayed higher cytotoxic activity than the parent compound ACP in a panel of nine cancer cell lines. Among the tested compounds, the amide 4p showed the highest cytotoxic activity toward leukemia cell lines, HL-60 and MOLT-3, with IC50 values of 6.81 ± 1.99 and 3.72 ± 0.26 µM, respectively. More interestingly, the amide derivative 4l exhibited cytotoxic activity with an IC50 of 13.73 ± 0.04 µM against the MDA-MB-231 triple-negative breast cancer cell line, which is the most aggressive type of breast cancer. Mechanistic studies revealed that 4l induced cell death in MDA-MB-231 cells through non-apoptotic regulated cell death. In addition, western blot analysis showed that compound 4l decreased the phosphorylation of FAK protein in a concentration-dependent manner. Molecular docking simulations elucidated that compound 4l could potentially inhibit FAK activation by binding to a pocket of FAK kinase domain. The data suggested that compound 4l could be a potential FAK inhibitor for treating triple-negative breast cancer and worth being further investigated.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Simulação de Acoplamento Molecular , Morte Celular , Amidas/farmacologia , Células HL-60
18.
J Org Chem ; 88(11): 6736-6749, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143349

RESUMO

A general protocol for oxidative annulation was developed for the preparation of 2-methyl-3,4-diacylquinolines directly from 2-alkynylanilines and 1,3-ketoesters. The reactions were mediated by Mn(OAc)3 in acetic acid at room temperature, which led to the desired quinoline products in one-pot in low to good overall yields on a wide range of substrates. The current method was convenient to conduct and proceeded under mild conditions in short reaction times.

19.
Chembiochem ; 24(20): e202300268, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37199473

RESUMO

Here we describe a novel catalyst-free 1,3-dipolar cycloaddition bioconjugation approach for chemical modification of proteins. The dehydroalanine (Dha)-containing protein reacts with nitrile oxides generated in situ through 1,3-dipolar cycloaddition in fully aqueous-buffered systems. This leads to the formation of a new isoxazoline ring at a pre-defined site (Dha) of the protein. Furthermore, the 1-pyrene isoxazoline-installed annexin V acts as a fluorescent probe, which successfully labels the outer cellular membranes of human cholangiocarcinoma (HuCCA-1) cells for detection of apoptosis.


Assuntos
Nitrilas , Óxidos , Humanos , Reação de Cicloadição , Catálise
20.
J Org Chem ; 88(7): 4172-4186, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36941741

RESUMO

The generation of reactive carbocation intermediates from ortho-alkynylarylmethanol substrates was utilized as a means for the synthesis of aryl(1-indanyl)ketones . Substrates with a tertiary carbon at the ß-position to the arene generated a carbocation intermediate via dehydration/protonation, followed by cyclization and hydration to give indanylketone products. For substrates with a quaternary carbon at that position, a carbocation intermediate was generated by protonation/elimination of water, followed by a 1,2-shift and a subsequent cyclization/hydration to give highly substituted indanylketones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...